
A Network-Failure-Tolerant Message-Passing System For
Terascale Clusters

Richard L. Graham, Sung-Eun Choi, David J. Daniel, Nehal N. Desai,
Ronald G. Minnich, Craig E Rasmussen, L. Dean Risinger and Mitchel W. Sukalski

Los Alamos National Laboratory∗

Advanced Computing Laboratory
MS-B287

Los Alamos, NM 87545 USA
lampi-support@lanl.gov

ABSTRACT
The Los Alamos Message Passing Interface (LA-MPI) is
an end-to-end network-failure-tolerant message-passing sys-
tem designed for terascale clusters. LA-MPI is a standard-
compliant implementation of MPI designed to tolerate
network-related failures including I/O bus errors, network
card errors, and wire-transmission errors. This paper details
the distinguishing features of LA-MPI, including support for
concurrent use of multiple types of network interface, and re-
liable message transmission utilizing multiple network paths
and routes between a given source and destination. In addi-
tion, performance measurements on production-grade plat-
forms are presented.

Categories and Subject Descriptors
B.8 [Hardware]: Performance and Reliability; C.2 [Computer

Systems Organization]: Computer-Communication Net-
works; C.4 [Computer Systems Organization]: Perfor-
mance of Systems

General Terms
Measurement Performance Reliability

Keywords
Message passing, fault tolerance, MPI

∗Los Alamos report LA-UR-02-892. Los Alamos National
Laboratory is operated by the University of California for
the National Nuclear Security Administration of the United
States Department of Energy under contract W-7405-ENG-
36. Project support was provided through ASCI/PSE and
the Los Alamos Computer Science Institute.

This paper is authored by an employee(s) of the United States Government
and is in the public domain.
ICS’02, June 22-26, 2002, New York, New York, USA.
ACM 1-58113-483-5/02/0006.

1. INTRODUCTION
High performance computing has traditionally been the

domain of the supercomputer: expensive, special purpose,
vector and/or parallel systems from specialist computer com-
panies (e.g. Cray YMP, Cray T3x, Meiko CS-2, Thinking
Machines CM5). The hardware and software developed by
these vendors had to be designed to meet strict performance
and fault-tolerance criteria demanded by their customers (a
few large corporate or governmental organizations).

Recently, supercomputer-level performance has become
achievable using large clusters of commodity-based systems
(e.g. Beowulf clusters). While promising excellent price–
performance, these pose a new set of challenges to the sys-
tem designer, namely:

• Obtaining the required performance by integrating dis-
parate hardware and software;

• Achieving acceptable levels of fault tolerance from com-
modity hardware; and

• Cost- and time-effective management of very large sys-
tems.

In examining these issues and their potential impact on
terascale computing, we believe that the first two issues can
be addressed by expanding the role of the messaging layer
to provide end-to-end fault tolerance while minimizing the
impact on performance.

This paper describes the Los Alamos MPI system (LA-
MPI), an end-to-end network-failure-tolerant message-
passing system. LA-MPI is a complete implementation of
the Message Passing Interface (MPI) version 1.2 [5], which
(a) reliably delivers messages in the presence of I/O bus,
network card and wire-transmission errors; (b) survives net-
work card and path failures (when the OS survives) and
guarantees delivery of in-flight messages after such a failure;
(c) supports the concurrent use of multiple types of network
interface; (d) implements message striping across multiple
heterogeneous network interfaces, and striping of message
fragments across multiple homogeneous network interfaces.

A recent example provides insight into why we believe
fault tolerance is a necessary component of the messaging
layer. Several years ago, Los Alamos National Laboratory
(LANL) users of a large parallel system began seeing errors



in their application codes. The errors were traced to the net-
work bit error rate which was approximately 10−15 (which
is 2 orders of magnitude better than commodity networking
equipment). Because most scientific codes not only propa-
gate but amplify errors, a small network error caused severe
errors at the application level. Network errors coupled with
the inability of the messaging layer to provide adequate er-
ror detection and correction facilities led to many days of
lost productivity and a loss of faith in the computing in-
frastructure. These problems were ultimately rectified by
adding primitive software error detection and correction to
the messaging library.

Most of the recent work in the area of messaging has oc-
curred in the context of MPI, an industry-wide standard.
There are several free implementations available [13, 6, 1]
as well as vendor-supplied versions that are customized to
a particular target machine [9, 3, 10, 15, 2]. To our knowl-
edge none of these libraries provides message striping across
multiple, heterogeneous network interfaces, striping of a sin-
gle message across multiple routes, or any form of resilience.
Also, few implementations go beyond TCP/IP when provid-
ing reliability.

The remainder of the paper is organized as follows. In
Section 2 we present a high-level overview of the LA-MPI
architecture. Network reliability is the focus of Section 3,
with special emphasis on the importance of reliability and
resilience in cluster-based systems. Section 4 presents per-
formance results for LA-MPI using a widely used scientific
application code. Finally, in Section 5 we discuss the present
status, and in Section 6 we discuss the project’s future di-
rection.

2. ARCHITECTURE
The LA-MPI architecture is outlined in Figure 1. To sim-

plify the discussion we divide the design into three parts:
the MPI interface layer, the Memory and Message Layer
(MML) and the Send and Receive Layer (SRL). The MPI
layer provides a thread-safe MPI 1.2 [5] compliant inter-
face for compatibility with existing applications. The MML
provides policy-driven management of physical and logical
resources. The SRL performs the low-level data communi-
cation.

2.1 MPI Layer
As mentioned above, the MPI layer implements an MPI

1.2 compliant API, the de facto message-passing standard
for scientific applications. Although LA-MPI is designed
in a modular fashion, and the MPI layer could be replaced
by alternative API wrapper layers, it should be emphasized
that the need to provide a complete and efficient MPI im-
plementation led to specific architectural design choices in
the lower layers of LA-MPI. In part this is a reflection of the
complexity of the MPI standard.

It is worth noting that MPI promises applications the cor-
rect delivery of data. To date, most MPI implementations
assume that a lower-level protocol or transport provides this
guarantee. This is valid if the transport is, for example,
a TCP/IP driver, or shared memory. There are, however,
many examples of high-performance interconnects with OS
bypass software support where hardware-level reliability is
not adequately handled. LA-MPI provides an implementa-
tion of MPI which guarantees correct data delivery to the
application in such circumstances.

Memory and Message
Management

Shared 
Memory

Network 
Communication

Net
A

NetNet 
B C

LAMPI

Memory 
Subsystem

Application 
User 

MPI

SRL

MML

USER LEVEL
KERNEL LEVEL

OS Bypass

Device

Other Machines

Network 
Drivers

Network Path Scheduler

Figure 1: LA-MPI architecture overview

2.2 Memory and Message Layer
The Memory and Message Layer (MML) is composed of a

memory manager, a set of network paths, and a path sched-
uler.

The memory manager controls all memory (physical and
virtual), including the process private memory, shared mem-
ory, as well as “network memory,” such as memory on the
NIC. Memory is managed in several pools, both process pri-
vate and process shared, which are used for the allocation
of buffers of various types using a free-list allocation strat-
egy to optimize buffer reuse. Special attention is paid to
memory locality issues on NUMA (non-uniform memory ar-
chitecture) multiprocessor systems: shared memory pools
are set up for each process so that a request can be made
for memory “close” to the process which will access it most.

A network path is a homogeneous transport abstraction
used to encapsulate the properties of different network de-
vices and protocols. A path controls access to one or more
network interface cards (NICs), Within a path there may
be several independent “routes” corresponding to physical
NICs. Currently implemented paths include UDP (over any
physical transport), HIPPI-800 and Quadrics Elan3, with
on-going development for Myrinet 2000. Messaging between
processes on the same host is handled by a special shared
memory “network” path which uses additional optimiza-
tions.

An example may clarify this concept. The Nirvana clus-
ter at LANL is a cluster of 16 SGI Origin 2000 128 pro-
cessor systems, linked together with 4 independent HIPPI-
800 switches, and gigabit ethernet. LA-MPI provides three
paths: shared memory, HIPPI-800, and UDP over gigabit
ethernet. The HIPPI-800 path comprises the entire HIPPI-
800 interconnect, using multiple (4) independent sub-paths
or routes between a given pair of end-points.

The path scheduler “binds” a specific message between
given source and destination processes to a particular path,
so that different messages between the same end-points may
use different paths. Though still under development, the in-



tention here is that the routing and scheduling algorithms
can be selected at compile time or run time, and may be a
default or user-written module. An algorithm might sched-
ule messages across paths according to message properties
(e.g. size, destination, etc.), and/or use statistics-based heuris-
tics. Depending on message size and available routes, a sin-
gle message may be striped across several routes.

In the Nirvana cluster described above, whole messages
may be scheduled across different paths (HIPPI-800 and
UDP), while fragments of a single message may be striped
across up to four different routes.

The MML architecture simplifies the implementation of
several desirable features:

• Message striping across several network paths, thereby
increasing network utilization and performance, is
straightforward. Note that message striping is per-
formed on a set of messages; a given message always
follows one path.

• Message-fragment striping across several routes within
a single network path is possible when a path com-
prises more than one network interface.

• Reliability is implemented within the path abstraction.
The path is responsible for breaking an outgoing mes-
sage into one or more fragments, and reassembling
incoming fragments into complete messages. During
fragmentation and reassembly, a path specific “check-
sum” function is used to verify correct transmission.
For HIPPI-800 we use a a 32 bit data checksum, and
in the UDP implementation we rely on the network
checksum provided by this protocol and assume that
any data we receive is correct. The Send and Receive
layer (SRL - see below) uses the ”checksum” when de-
ciding how to proceed. If data corruption is detected
the entire fragment is retransmitted. The detailed pro-
tocol for this process is discussed in section 3.

• Resilience to network device failure is a function of
the path scheduler. In case of a network route fail-
ure, evidenced by many failed message transmissions,
the path scheduler will attempt to “rebind” outstand-
ing messages to another valid (and functional) route
between the source and destination processes. This
route may use the same path or it may be assigned to
a different path. Future messages will not be bound
to the failed route. The ability to “fail-back” to the
first route (corresponding to the case of a temporarily
unavailable network device) is also planned. This work
in progress.

2.3 Send and Receive Layer
The Send and Receive Layer (SRL) is responsible for send-

ing and receiving message fragments, and is highly network
dependent.

The physical path message fragments fall into two cate-
gories: those that require the network (off-host) and those
that do not (on-host). On-host messages are simple copies
through shared memory. Off-host messages are handled by
the Network Communication module, where the message
fragments are sent via physical resources associated with
the path to which the message is bound.

As mentioned above, the SRL layer also handles message
fragmentation and reassembly. Message reassembly occurs

Recv. Posted
by Dest. Proc

Fragment Recvd

Was Frag
recvd

properly

Message Created
by MPI

Path associated 
with message

Frag is sent
to Dest

Proc

Recv ACK/NACK

Timer

NACK?
YES

NO

Specific 
ACK??

YES

NO

retransmit

Generate
ACK

Fragment
timeout?

YES

NO

Release Frag

Record
Aggregate

info

Figure 2: Point-to-Point off-host communication for

a single fragment message. For a multiple fragment

message, the fragments are sent in parallel as long

as resources are available, and the acknowledgments

can be received in any order.

in the order in which the fragments are received, and in sys-
tems with multiple routes between a pair of end-points out-
of-order fragment arrival is a common event, and is handled
correctly by this layer. This layer also handles the arrival
of duplicate message fragments which can occur with timer
based data retransmission.

Finally, the SRL layer also handles the in-order delivery
required by the MPI standard. Data that arrives out-or-
order is queued for later processing, as is unexpected data.

Figure 2 illustrates the steps in a typical off-host point-
to-point communication. For simplicity, assume the mes-
sage consists of a single fragment. When the user specifies a
send, the MML determines the appropriate path and frag-
ments the message. The fragment is sent to the destination
while the source waits for an acknowledgment. For a multi-
ple fragment message, the fragments are sent in parallel as
long as resources are available, and the acknowledgments can
be received in any order. If the fragment was not received
properly (determined either by a negative acknowledgment
or time out), the fragment is retransmitted. If the fragment
was received properly, the old fragment is freed.



0 4 16 64 256 1K 4K 16K

Message size (bytes)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000
ti

m
e 

(u
se

c)
Round-trip message latency for Dell x86 Linux

LA-MPI full reliability
LA-MPI no reliability

Figure 3: Comparison of full reliability LA-MPI

to LA-MPI with reliability turned off for the i686

Linux.

3. RELIABILITY

3.1 Why include a reliability layer?
We gave a cursory answer to this question in the intro-

duction. “Reliable” network protocols and devices are of-
ten designed to one set of criteria, and deployed in envi-
ronments that fail to respect these design assumptions. For
example, high-performance NICs are sometimes capable of
assuring reliable data transfer between NICs by doing reli-
able transport protocol (e.g. TCP) processing on the NIC
itself. Unfortunately, this reliability guarantee is negated if
the NIC itself is plugged into an unreliable I/O bus. Given
the complexity of modern computers, the net result is that
application to application reliability is often quite difficult to
achieve, and its lack almost impossible to diagnose in large
cluster environments.

Why not use the nearly ubiquitous TCP transport pro-
tocol (executed on the main CPUs)? The answer is, in a
word, performance. TCP/IP-based messaging has relatively
high latency due to the maintenance of connection state that
allows its heuristics to operate in environments from noisy
56Kbps dialup modems to gigabit ethernet LANs. High per-
formance cluster environments, however, are usually imple-
mented with modern local and system area networks that
are capable of supporting very low latency in the range of
3-30 microseconds from NIC to NIC. A well-performing mes-
sage library must provide reliability over a range of network
devices (e.g. Myrinet, Quadrics, gigabit ethernet, etc.) us-
ing protocols with minimum impact on latency (e.g. UDP,
VIA, etc.). In order to minimize latency in these environ-
ments, LA-MPI uses its own lightweight protocol to provide
reliability over a diverse set of network technologies.

3.2 Protocol
The reliability layer in LA-MPI shares a number of at-

tributes with other reliability layers (most notably TCP) in-
cluding the use of watchdog timers, checksums, and sequence
numbers to check for duplicate, lost, or corrupt data [12, 14].
Unlike most TCP implementations, the LA-MPI reliability
layer is implemented in user space much like the reliability
protocol in Globus-Nexus [4]. Figure 2 shows the basics of
the LA-MPI reliability protocol.

The protocol uses sender side retransmission to achieve
the desired level of reliability. Messages are fragmented into
fixed-sized chunks, or “fragments”. Each fragment is as-
signed a sequence number (out of a monotonically increasing
sequence of 64-bit values) and a timestamp, and the number

0 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

0

5000

10000

15000

20000

ti
m

e 
(u

se
c)

Round-trip message latency for SGI Origin 2000

LA-MPI full reliability
LA-MPI no reliability

Figure 4: Comparison of full reliability LA-MPI to

LA-MPI with reliability turned off for the SGI Ori-

gin 2000.

Platform (network) LA-MPI SGI MPT MPICH

O2K (shared mem) 7.0 6.5 19.9
O2K (Hippi800) 155.3 143.5 N/A
O2K (IP) 526.7 525.6 586.0
i686 (shared mem) 2.3 N/A 23.5
i686 (UDP) 132.8 N/A 123.5

Table 1: Zero-byte latency in micro-seconds for var-

ious message-passing libraries

of times a given fragment has been sent is updated each time
the fragment is sent. Retransmission is scheduled on a per
fragment basis using a truncated exponential backoff scheme
for every retransmission attempt; the backoff scheme helps
protect receiver resources in the event the receiver is busy
executing non-communication code.

Upon receiving the fragment, the receiving process sends
either a positive acknowledgment, ACK, or a negative ac-
knowledgment, NACK, to the sending process. ACKs can
be of two types: fragment specific, and non-specific. Frag-
ment specific ACKs are generated when the receiving pro-
cess has successfully received a fragment, verified its ”check-
sum”, and copied its data into application-specified mem-
ory. Non-specific ACKs are generated when a duplicate
fragment is received. They contain information about the
largest in-order sequence numbers seen from a sending peer
for data that has been received, and for data that has been
successfully received and delivered to the receiving applica-
tion (i.e. copied out of the LA-MPI library). Non-specific
ACK information is piggybacked in each fragment specific
ACK, and is used by the sender to delay retransmission of
fragments that have been received but have not yet been
acknowledged by a fragment-specific ACK or NACK.

NACKs are generated when the data received is corrupt
(i.e. fails ”checksum” verification upon being copied to ap-
plication memory). Upon receiving a NACK, the sender will
arrange to retransmit the data.

Figures 3 and 4 illustrate the overhead of providing end-
to-end reliability in LA-MPI. The overhead is small, and
ranges between 2 to 15% for x86 Linux and 2 to 3% for SGI
Origin 2000.

4. PERFORMANCE
In this section we present LA-MPI performance data on

a simple ping-pong benchmark and a representative scien-



0 4 16 64 256 1K 4K 16K 64K

Message size (bytes)

0

20

40

60

80

100

120

140

160

180

200

M
B

/s
ec

Round-trip throughput for Dell x86 Linux

LA-MPI SMP (on-host)
LA-MPI (off-host)
MPICH 1.2.3 SMP (on-host)
MPICH 1.2.3 (off-host)

Figure 5: Comparison of round-trip message

throughput for Dell PC x86 Linux.

0 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

0

20

40

60

80

100

120

140

160

180

200

M
B

/s
ec

Round-trip throughput for SGI Origin 2000

LA-MPI SMP (on-host)
LA-MPI (off-host)
SGI MPT 1.5.2 (on-host)
SGI MPT 1.5.2 (off-host)
MPICH 1.2.3

Figure 6: Comparison of round-trip message

throughput for the SGI Origin 2000.

tific application, CICE (the Los Alamos Sea Ice Model).
For comparison, we also present data from other available
MPI implementations where this is available, notably Ar-
gonne National Laboratory’s reference MPI implementation,
MPICH version 1.2.3, and SGI’s Message Passing Toolkit
version 1.5.2 (MPT).

Performance was measured on Nirvana, LANL’s
16-machine cluster of SGI Origin 2000 (O2K) machines (128
250 MHz R10K processors per machine) running IRIX 6.5,
and representative commodity machines, namely Dell Pre-
cision 610 PCs running RedHat Linux 7.1 and 7.2 (dual
550MHz Pentium III processors for on-host testing and a sin-
gle processor for off-host testing). Off-host communication
on Nirvana was accomplished over the HIPPI-800 (100 MB/s
peak performance) interconnect using user-level operating
system bypass support, and using UDP over gigabit ether-
net (1 Gbps peak performance). Off-host communication on
the Dells was accomplished using UDP/IP over a 100 Mbps
switched ethernet. On-host communication in both environ-
ments used anonymous shared memory.

It is important to note that while current performance can
be characterized as good to excellent (while providing ser-
vices other MPI libraries do not), we expect these numbers
and other performance metrics to improve as we continue
optimizing the library. A more comprehensive performance
evaluation is under way.

4.1 Ping-Pong Latency and Bandwidth
Table 1 shows the zero-byte half-round-trip message la-

tency for LA-MPI, SGI MPT and MPICH from (Argonne
National Lab) in micro-seconds.

As this table indicates LA-MPI has very good zero-byte

0 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

0

20

40

60

80

100

120

140

160

180

200

M
B

/s
ec

Round-trip throughput using multiple NICs

LA-MPI (4 NICs)
LA-MPI (3 NICs)
LA-MPI (2 NICs)
LA-MPI (1 NIC)
SGI MPT 1.5.2 (1 NIC)

Figure 7: Round-trip throughput with message

striping.

latency. On the Origin2000, the on-host latency of LA-MPI
is 7.0 micro-seconds, 8% worse than SGI’s MPT, but nearly
three times better than MPICH. Over HIPPI-800 LA-MPI’s
latency is about 8% higher than SGI’s MPT. MPICH has
no implementation for this device. LA-MPI’s (UDP) and
MPT’s (TCP/IP) latency over gigabit ethernet are virtu-
ally identical, while MPICH (TCP/IP) has a latency that is
about 11% higher.

On the Dell’s LA-MPI’s shared memory latency is 2.3
micro-seconds, an order of magnitude better than MPICH,
but over switched ethernet MPICH is currently about 8%
better than LA-MPI.

Figures 5 and 6 compare the bandwidth achieved by LA-
MPI, MPT and MPICH at various message sizes.

Comparing on-host (shared memory) bandwidths on the
Origin 2000, at small message sizes MPT performs better
than LA-MPI, but by the time one reaches larger messages
size LA-MPI outperforms MPT. For example at 256 byte
messages, MPT runs at 19 MB/s, and LA-MPI at 17 MB/s,
at 8 KB MPT gets about 101 MB/s and LA-MPI gets about
87 MB/s, but at 1 MB MPT gets 135 MB/s, but LA-MPI
runs at 145 MB/s. MPICH does not perform as well as
LA-MPI and SGI’s MPT, with bandwidth of 9.9 MB/s,
75 MB/s, and 80 MB/s, respectively.

Similar results are obtained for shared memory communi-
cations on the Dell when we compare LA-MPI and MPICH,
with LA-MPI showing significantly better bandwidths than
MPICH. At 256 bytes LA-MPI is running at 59 MB/s, at
8 KB bytes at 75 MB/s, peaking out at 64 KB message
sizes at a bandwidth of 169 MB/s, and at 512 KB the rate
is 93 MB/s. MPICH’s performance is 9.6 MB/s, 75 MB/s,
131 MB/s, and 86 MB/s, respectively.

For off-host communication, comparing LA-MPI and SGI’s
MPT bandwidths, we see that for small messages the two
are comparable, but for larger messages LA-MPI has signif-
icantly better performance, since LA-MPI stripes fragments
of a single message across several HIPPI-800 routes (4 in
this case). At 256 bytes LA-MPI’s bandwidth is 1.5 MB/s,
at 8 KB 18.8 MB/s, at 128 KB 86 MB/s, and at 1 MB
135 MB/s. For SGI’s MPT the bandwidths are 1.4 MB/s,
20 MB/s, 57 MB/s, and 73 MB/s, respectively. The rela-
tively large differences (about 60%) already evident at 128
KBytes can be understood, since the striping is done in
chunks of 16 KB, and at the size of 128 KB each HIPPI-
800 route is already handling 2 message fragments.

Figure 7 illustrates the benefits of message-fragment strip-
ing, that is, sending message fragments in parallel over dif-



message size in bytes number of messages

< 100 21786
101-1000 18410

1001-10001 18410
10001-100000 18410

> 100000 26090

Table 2: Number of messages by size range in CICE

for point-to-point communication. The distribution

of message sizes is fairly even with slightly more very

small and very large messages.

ferent NICs. LA-MPI chops HIPPI-800 messages into 16 KB
fragments, and the benefit of striping is not evident until the
message length is more than one or two fragments.

4.2 CICE: the Los Alamos Sea Ice Model
CICE [8] is a production code for efficiently modeling sea

ice in a fully coupled atmosphere-ice-ocean-land global cli-
mate model. CICE is a community model developed by
scientists at LANL, the National Center for Atmospheric
Research (NCAR), and other universities. It is widely used.

CICE is also a good benchmark program for evaluating
MPI implementations. It is written in Fortran 90 using a
wide assortment of MPI features including point-to-point
communication (MPI ISEND/MPI IRECV), broadcasts, re-
ductions, MPI groups, and MPI datatype operations. In
addition, CICE uses a fairly even distribution of message
sizes with slightly more very small and very large messages
(see Table 2). This removes strong biases toward particular
message sizes when evaluating performance.

CICE is typically run on eight processors on the SGI Ori-
gin 2000 at LANL. Figure 8 shows the performance of CICE
for 64 and 128 time steps for MPICH, SGI MPT, and LA-
MPI. Performance with LA-MPI (99.18 seconds) is within
3% of SGI MPT (96.47) for the 64 time step case, and within
less than 2% of SGI MPT for the 128 time step case (191.85
seconds and 188.78 respectively). MPICH ran 18% and 20%
slower than LA-MPI, respectively.

The point-to-point communications times are also inter-
esting to compare with LA-MPI (8.02 seconds) taking 5%
less time than SGI’s MPT (8.43 seconds) and 69% less time
than MPICH (13.54 seconds) at the 64 time step case. For
the 128 time step case these differences are 27%, and 200%,
respectively, with LA-MPI taking 14.05 seconds, SGI’s MPT
17.82 seconds, and MPICH 28.18 seconds.

5. CONCLUSIONS
In this paper, we have given a brief overview of LA-MPI,

the Los Alamos Message Passing Interface, a message-passing
system for terascale clusters. Such clusters will be composed
of hundreds or thousands of individual commodity-based
machines connected by hundreds or thousands of network
interfaces over hundreds or thousands of cables. Each in-
dividual component of the system not only adds capability
but also points of failure.

LA-MPI was designed with the assumption that teras-
cale clusters are unreliable. In particular, the increasing
functionality of hardware, especially with respect to data
integrity, does not eliminate the need for additional soft-
ware to ensure end-to-end reliability. We have shown that

nsteps=64 nsteps=128
0

100

200

300

400

500

ti
m

e 
(s

ec
on

ds
)

Total runtime and communication time for CICE

MPICH
SGI MPT
LA-MPI

Figure 8: CICE run time using MPICH, SGI MPT,

and LA-MPI for 64 and 128 time steps. The dark

portion of the bars indicate time spent in communi-

cation.

it is indeed possible to provide end-to-end reliability in a
message-passing system without significant overhead.

With the number of system failures expected to increase
with cluster size, applications must be prepared to deal with
these failures. We have taken the first steps in providing
resilience for applications running on such clusters; applica-
tions can continue through network failures as long as there
is at least one physical path between source and destination
processors.

LA-MPI also offers the possibility to enhance performance
relative to existing message-passing systems by implement-
ing message striping across multiple heterogeneous network
interfaces, and message-fragment striping across multiple
homogeneous network interfaces.

6. FUTURE WORK
LA-MPI is still in active development. We have recently

made a port to Compaq’s Tru64 UNIX to add to our ex-
isting Linux and IRIX support. Quadrics’ Elan3 network
interface is now supported under Tru64, and Myrinet 2000
network support under Linux is being implemented. Full
automatic network path failover is in development, and fu-
ture performance optimization work will address scalability
issues.

In addition to these efforts, LA-MPI is part of a larger
project aimed at providing complete application resilience,
or run-through. The Cluster Research Lab in the Advanced
Computing Laboratory at LANL has a number of projects
that will together enable an application to run-through to
completion despite hardware failures. This is particularly
important for applications at LANL and other DOE lab-
oratories that run for weeks to months before getting an
“answer.” LA-MPI will ultimately be integrated with Su-
permon [11], a cluster monitoring system that will predict
failures based on vital hardware statistics such as CPU tem-
perature and fan speeds. Applications running on processors
or nodes that are predicted to fail will be migrated off to a
healthy node via the BProc migration facility [7]. LA-MPI
will be enhanced to support process migration.

Acknowledgments
The authors would like to thank former members of the
LA-MPI team (then called User-Level Messaging) including



Pete Beckman, Steve Karmesin, Ling-Ling Chen, MaryDell
Nochumson (for her efforts in regression testing), and mem-
bers of the LANL BlueMountain support team.

7. REFERENCES
[1] LAM/MPI parallel computing,

http://www.lam-mpi.org.

[2] Edinburgh Parallel Computing Centre, CRI/EPCC
T3D/E MPI.

[3] IBM Corporation, IBM Parallel Environment for AIX
(PE).

[4] A. Denis, Variable reliability protocol in Globus-Nexus,
Tech. report, Information Science Institute (ISI),
University of Southern California, 1999.

[5] Jack J. Dongarra and David Walker, MPI: a standard
message passing interface, Supercomputer 12 (1996),
no. 1, 56–68.

[6] W. Gropp and E. Lusk, Installation guide for mpich, a
portable implementation of MPI, Mathematics and
Computer Science Division, Argonne National
Laboratory, 1996, ANL-96/5.

[7] Erik A. Hendriks, BProc: The Beowulf distributed
process space, 16th Annual ACM International
Conference on Supercomputing, 2002.

[8] E. C. Hunke and W. H. Lipscomb, CICE: the Los
Alamos sea ice model, Tech. Report LA-CC-98-16, Los
Alamos National Laboratory, 1999.

[9] Silicon Graphics Inc., SGI message-passing toolkit.

[10] Sun Microsystems, Sun HPC ClusterTools.

[11] Ron Minnich and Karen Reid, Supermon: High
performance monitoring for linux clusters, The Fifth
Annual Linux Showcase and Conference, November
2001.

[12] J. Postel, Transmission Control Protocol, Internet
Engineering Task Force, RFC 793, 1981.

[13] Mitsuhisa Sato, PM: An operating system coordinated
high performance communication library,
High-Performance Computing and Networking, 1997.

[14] W. R. Stevens, TCP/IP illustrated, volume 2; the
implementation, Addison Wesley, Reading, 1995.

[15] Scali: Scalable Linux Systems, Scali MPI,
http://www.scali.com.


